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The possibility of obtaining a natural periodic relative motion of formation flying Earth satellites is investigated

both numerically and analytically. The numerical algorithm is based on a genetic strategy, refined by means of

nonlinear programming, that rewards periodic relative trajectories. First, we test our algorithm using a point mass

gravitational model. In this case the period matching between the considered orbits is a necessary and sufficient

condition to obtain invariant relative trajectories. Then, the J2 perturbed case is considered. For this case, the

conditions to obtain an invariant relative motion are known only in approximated closed forms which guarantee a

minimal orbit drift, not amotion periodicity. Using the proposed numerical approach,we improved those results and

found two couples of inclinations (63.4 and 116.6 deg, the critical inclinations, and 49 and 131 deg, two new “special”

inclinations) that seemed to be favored by the dynamic system for obtaining periodic relative motion at small

eccentricities.

Nomenclature

a = orbit semimajor axis
ai, bi = epicyclic orbital elements
e = orbit eccentricity
f = bector function representing the

satellites relative dynamics
fr, f�, fz = perturbing forces in r, �, z coordinate

system
i = orbit inclination
J = objective function for the genetic

optimizer
J2 = Earth flattening term in gravitational

field series expansion
M = orbit mean motion
Ngen = number of generations in the genetic

optimizer
Nind = number of individuals in the genetic

optimizer
P = perturbing actions
p = orbit semilatus rectum
R = rotation matrix from inertial to LVLH

frame
R� = Earth equatorial radius
r� �X Y Z� = satellite absolute position vector in

inertial frame

T = candidate period
t = time
x� �x y z _x _y _z� = satellites relative state vector in

Cartesian coordinates
�i, �i = canonical momenta
�0 = satellites initial relative phase angle
�V = velocity instantaneous variation
" = perturbation term
� = on orbit satellite anomaly
� = decision vector for the genetic optimizer
� = Earth gravitational constant
$ = orbit argument of perigee
� = satellites relative distance
�� �x y z� = satellites relative position vector
� = orbit right ascension of ascending node
! = LVLH frame angular velocity vector
���0, ���f = value at initial and final time

I. Introduction

L ATELY, numerous missions involving satellites flying in
formation have been planned or studied.A brief review includes

ESA missions Proba 3, LISA, XEUS, Darwin, and SMART-3,
NASA’s missions EO-1, ST5, and Terrestrial Planet Finder, the
international mission known as A-Train and the JAXA’s SCOPE
mission. To keep the satellites of the formation in the designed
configuration, and therefore to achieve the mission’s goals, control
actions are needed. The cost of this orbital control in terms of �V
limits both the mission duration and the expected performances.
Advantageous dynamics could reduce the cost of these operations, in
particular, the possibility to obtain periodic or quasi-periodic natural
relative motion would be a significant saving factor as recently
argued by Becerra et al. [1]. Many different approaches to find a
periodical relative motion are considered in the recent literature on
this topic. Inalhan et al. [2] found the analytical expression for the
initial conditions resulting in periodic motion based on the classical
Tschauner–Hempel equations [3]. Kasdin and Koleman [4] used the
epicyclic orbital elements theory to derive bounded, periodic orbits
in the presence of various perturbations. Vaddi et al. [5] studied the
Hill–Clohessy–Wiltshire [6] (HCW) modified system to include
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second-order terms. Finally, Schaub and Alfriend [7] formulated the
conditions for invariant J2 relative orbits introducing relations
between the mean orbital elements of the two satellites. The
analytical approaches taken in these works lead to two kinds of
findings: 1) initial conditions that ensure exact periodicity in
approximated dynamic models or 2) initial conditions resulting in
bounded (i.e., with minimum drift, but not periodic) relative motion
in more detailed dynamic models. On the other hand, the numerical
approach taken here is able to reveal previously unknown features of
the minimum drift relative trajectories for satellites in a fully
nonlinear, perturbed environment.

The paper is structured as follows. In Sec. II, we define our
problem as an optimization problem and we describe the numerical
technique we use to solve it. In Sec. III, we test the behavior of the
algorithm by applying it to the well-known and simple unperturbed
relative satellite motion case. In Sec. IV we introduce the J2
perturbation and we apply our algorithm to this case commenting on
the unexpected results.

II. Problem Statement

Consider a generic nonautonomous dynamic system _x� f�x; t�,
for example, the relative dynamics of satellites flying in formation.
Define �x� x0 � x�T�, where x0 is the system state at the initial
time and T is a time variable here called “candidate period” for
reasons that will soon be clear. Then, the following optimization
problem is defined:8>><

>>:
find �X0 T�T

to maximize J� J�j�xj�
subject to _x� f�x; t�

(1)

where the objective function J is constructed in such away as to have
its global maximum at �x� 0. The optimization problem above is
equivalent to the task of finding as-periodic-as-possible solutions to
the system _x� f�x; t�. Exploiting this approach, we solve the
problem in Eq. (1) for a number of different dynamic models
representing the relative motion between satellites under different
orbital environments. The as-periodic-as-possible solutions
correspond, in our case, to minimal relative orbit drift. As we
study a number of systems _x� f�x; t�, we face different
optimization complexities and objective function properties.
Thinking about the relative motion between satellites moving on
Keplerian orbits, the problem defined by Eq. (1) has an infinite
number of solutions, corresponding to orbits with equal semimajor
axis. A similar structure is also expected when the Keplerian
dynamic is perturbed. As a consequence, a genetic approach,
avoiding issues related to domain knowledge and being able to cope
withmultiple local and globalminima, has been selected to perform a
search in the solution space. The PIKAIA freely available software
[8] was used in this work as a genetic optimizer. PIKAIA encodes the
decision vector � using a decimal alphabet. Table 1 shows the
fundamental parameters of a genetic algorithm (GA) used in all the
simulations.

The best solution returned by the genetic algorithm is then refined
locally by means of a nonlinear programming numerical solver.

In our simulations the decision vector� contains the initial relative
position, the initial relative velocity, and the candidate period T. We
consider the relative motion between two satellites: a chief and a
deputy to use a popular terminology connected to formation flying
research. The absolute dynamics of both the chief and the deputy are
simulated propagating the inertial coordinates of the spacecraft in
time,

d2r

dt2
�� �

r3
r	 P

where P is the perturbing action considered, � is the planetary
constant, and r is the orbital radius vector. The relative state is then
evaluated by means of Eq. (2):

(
�x y z�T�R��Xd Yd Zd�T ��Xc Yc Zc�T�
� _x _y _z�T�R�� _Xd _Yd _Zd�T �� _Xc _Yc _Zc�T��!
�x y z�T

(2)

whereR is the rotation matrix from the inertial coordinate system to
the local-vertical/local-horizontal (LVLH) frame in which the
relative state is defined. The subscripts c and d stand for chief and
deputy satellites. The orbit of the chief is considered known and the
initial conditions to propagate the deputy motion are obtained
transforming the relative �x0 position into absolute coordinates
inverting Eq. (2).

As PIKAIA requires the decision vector components to satisfy the
constraints ��k 2 �0; 1�, we define a simple transformation between �
and a new decision vector �� that can be used by the optimizer. For the
initial relative distances:

x0 y0 z0
� �

� � �1 �1 �1
� �

	 2 ��1 ��2 ��3
� �

�K (3)

This limits the range of variation for the initial relative position to
��K;K� km. The parameterK allows bounding the dimension of the
minimum drift orbit one is interested in finding. Similarly, for the
relative initial velocities we set

_x0 _y0 _z0
� �

� 10�2� �1 �1 �1
� �

	 2 ��4 ��5 ��6
� �

�K (4)

This limits the initial velocities in the range ��10�2; 10�2� K.
We then defined T � Tkep � ��7k, where k is a properly chosen

constant (some tens of seconds) and Tkep is the orbital period

2�
�����������
a3=�

p
of the chief orbit.

T is clearly a crucial parameter. At T, the final relative coordinates
are compared to the initial relative coordinates, thus determining the
quality of the individual. A good individual has a small �x and its
position in the individual ranking is high; therefore it has a larger
chance to mate and to generate “good” sons. Its genes will survive in
the next generation, and if they will be ranked first in the last
generation, they will be further refined by a local optimizer and
represent the set of initial conditions that generate the minimum drift
relative orbit. The fitness function we used to rank the individuals is

Table 1 Parameters used for the genetic optimizer

Nind � no. of individuals 20
Ngen � no. of generations 500
No. of significant digits (no. of genes) 9
Crossover probability 0.85
Mutation mode One-point, adjustable rate based on fitness
Initial mutation rate 0.005
Minimum mutation rate 0.0005
Maximum mutation rate 1
Reproduction plan Steady state/replace worst
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J��� � 1

0:001	
������������������������������������������������������������������������������������������������������������������������
�xf�x0

x0
�2 	 �yf�y0

y0
�2 	 �zf�z0

z0
�2 	 � _xf� _x0

_x0
�2 	 � _yf� _y0

_y0
�2 	 � _zf�_z0

_z0
�2

q (5)

A perfect individual (periodic motion) has a fitness value of 1000,
while a percentage difference of 0.1%between the initial and thefinal
state, brings down the fitness value to 500, a difference of 1%
corresponds to a fitness value of 90, and so on.

III. Unperturbed Case

To test and tune our approach, we first consider the dynamic
system describing the relative motion around a perfectly spherical
Earth with uniform mass, and we compare our results with the
semimajor axis matching condition that assures a perfectly periodic
relative motion. We also perform comparisons with several other
known approximate results coming from Taylor expansions of the
original nonlinear system. These are described next.

A. HCW Case

Consider the Hill–-Clohessy–Wiltshire linear equations, valid for
circular unperturbed reference orbits:8>><

>>:
�x � 2! _y � 3!2x� 0

�y	 2! _x� 0

�z	 !2z� 0

(6)

The periodic motion condition, coming from the suppression of the
secular term in the equations solution, is

_y 0 ��2!x0 (7)

Trivially, as the formation dimension grows, the nonlinearities make
this condition (which we refer to as the HCW condition) no longer
valid, even when only Keplerian forces are considered. The well-
known relative trajectories in Fig. 1 are obtained by propagating for
11 periods some initial conditions fulfilling the HCW condition
using a nonlinear, nonperturbed model.

In Fig. 2 the drift per orbit obtained applying the condition in
Eq. (7) is reported as a function of the formation dimension K. The
initial relative position and velocities considered are
K�1; 0; 0:5; 0;�2!; 0� km. The drift per orbit is measured as the
difference between the spacecraft relative distance at the initial time
and after one period as obtained by propagating the dynamics with a
nonlinear model.

B. Nonlinear Correction

Vaddi et al. [5] developed a model that takes into account the
effects of nonlinearities, both for circular and for elliptical orbits.
Following the same approach of the Taylor series expansion used to
derive the HCW equations, but retaining also quadratic terms, one
may obtain the following model:8>><

>>:
�x � 2! _y � 3!2x� "

�
y2

2
	 z2

2
� x2

�
�y	 2! _x� "xy
�z	 !2z� "xz

(8)

where "� 3�=a4. A condition for periodic relative orbits is then
reached:

�x0; y0; z0��
�
�

2
sin�!t	�0�;�cos�!t	�0�;�sin�!t	�0�

�

� _x0; _y0; _z0��
�
!�

2
cos�!t	�0�; _y�0�;!�cos�!t	�0�

� (9)

where � is the relative distance and �0 the initial relative phase angle.
The only variable influencing the secular growth of the relative
motion is _y, which can be written as

_y�0� � _yh�0� 	 " _ycn�0� (10)

where _yh is the term deriving from the HCW condition and _ycn is the
correction for the nonlinearity:

_y cn�0� � �
�
�2

48!

�
�12	 6 cos�2�0�� (11)

C. Epicyclic Elements

Adifferent analytical formulation is found in [4]. Here Kasdin and
Koleman use a Hamiltonian approach to derive the equations of
motion for an object relative to a circular or slightly elliptical
reference orbit. By solving the Hamilton–Jacobi equation in terms of
the epicyclic elements they are able to provide analytical
approximations of the invariance condition. By means of this
formalism, they derive bounded, periodic orbits in the presence of
various perturbations, among them the nonlinearities. Here we only
report the conditions found for the circular reference orbit case. Two

expressions are given to compute a normalized �_y0 [in Eq. (15) the
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bars stand for the distances being normalized by the reference orbit
semimajor axis a, the time by the angular velocity !, giving a-
dimensional quantities]: 1) the first one considers second-order terms
in the series expansion for the initial conditions, 2) the second
considers also third-order terms:

a3�0� � �5
2
a21�0� � 1

2
�a22�0� � b21�0� 	 b22�0��

� 3a1�0�b3�0� � b23�0� (12)

a3�0� � �5
2
a21�0� � 1

2
�a22�0� � b21�0� 	 b22�0�� � 3a1�0�b3�0�

� b23�0� 	 �3
2
�a21�0�b1�0� 	 a22�0�b1�0� 	 1

2
b31�0�� (13)

In both cases:

a1�
��������
2�1

p
cos�1 b1�

��������
2�1

p
sin�1 a2�

��������
2�2

p
cos�2

b2�
��������
2�2

p
sin�2 a3��3 b3��3

(14)

where �i, �i are the initial canonical momenta and coordinates,
which can bewritten as functions of the initial conditions. For brevity
we omit the subscript 0 in the following:

�1�
1

2
��_x2	�2�_y	3�x�2� �2�

1

2
��_z2	 �z2� �3� �_y	2�x

�1��tan�1
�
3 �x	2�_y

�_x

�
�2��tan�1

�
�z
�_z

�
�3��2�_x	 �y

(15)

Substituting Eq. (15) in Eq. (14), using the conditions in Eq. (12)
or in Eq. (13) (according to the order of the chosen approximation),
and solving for _y, gives the initial _y for bounded orbits.

The difference between the semimajor axes of the spacecraft in the
formation is a good index of how near the approximation of the
analytical conditions is to the physical one (i.e., semimajor axis
matching); a measure of the drift per orbit can be given as [9]

drift =orbit��3��a (16)

The difference �a resulting by using condition (11) and (12) or
(13) can be plotted for various formation dimensions as shown by
Fig. 3. The third-order epicyclic conditions are a very good
approximation of the period-matching condition, and indeed the use
of a numerical approach is not necessary in this case. We rather used
these analytical results and the period-matching condition to test the
performances of the numerical technique and to tune the optimizer
parameters.

The final comparison between the best analytical (third-order
epicyclic) and numerical (genetic algorithm without final local
refinement) solutions is showed in Fig. 4.

Figure 4 shows the main difference between the analytical and
numerical approach: the �a resulting from the genetic algorithm

simulations oscillates because of the stochastic nature of the
optimizer, while the �a resulting from the application of the third-
order conditions grows with the formation dimensions. Similar
results can be obtained for elliptical unperturbed reference orbits.

IV. J2 Perturbed Case

Let us study the solutions of Eq. (1) in the case where f describes
the relative motion between two satellites orbiting around an oblate
Earth. The objective function J is again given by Eq. (5). As already
mentioned, this corresponds to minimizing the relative orbital drift.
Some previous work has been done to determine the possibility of
invariant relative satellite motion when J2 is considered as a
perturbing term. In particular, the paper by Schaub and Alfriend [7]
introduces the so-called J2 invariant relative orbits. In their work,
mean orbital elements are used and the secular drifts of the longitude
of the ascending node and of the sum of the argument of perigee and
mean anomaly are set to be equal between two neighboring orbits. By
having both orbits drifting at equal angular rates on the average, they
will not separate over time due to the J2 influence. Two first-order
conditions are presented in [7]:

�a� 2Da0�	 �e� �1 � e
2� tan�i�
4e

�i (17)

where

�	�� 	0
4
tan�i0��i 	�

�������������
1 � e2
p

(18)

and D is a parameter depending on i, a, and 	. The combination of
Eqs. (17) and (18) provides the two necessary conditions on themean
orbital element differences yielding a J2-invariant relative orbit.
When designing a relative orbit using the mean orbital element
differences, �i, �e, or �a is chosen, the remaining two element
differences are then found through the two constraints in Eq. (18).
The remaining element differences ��, �$, and �M can then be
chosen at will without affecting the J2 invariance. Even though called
J2 invariant orbits, these two conditions are only valid in a first-order
approximation. When using these conditions the relative orbit is still
exhibiting a relative drift, as Fig. 5 shows for an almost circular
35 deg inclined reference orbit. Propagation is again performed via a
nonlinear model including J2 as a perturbation.

The conditions in Eqs. (17) and (18) represent two elegant
relations defining relative orbits with a small drift per orbit. We use
our numerical approach based on the solution of the global
optimization problem stated in Eq. (1) to check to what extent the
residual drift obtained with this analytical approach is an artifact of
the use of mean elements. Repeating the calculation for the entire
range of inclinations, the results vary sensibly, disclosing a
previously unknown feature of invariant relative motion. In Fig. 6,
we report the final fitness function reached for different inclinations
ranging from 0 to 180 deg. The other orbital parameters of the Chief
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satellite used for this simulation were a� 6678 km, e� 0:00118,
$ � 90 deg,�� 270 deg, and �� 0 deg. The size of the relative
orbit is regulated by means of the constant K in Eqs. (3) and (4): in
this simulation this is set to 1. In the figure, we report both the output
from the genetic algorithm and thefinal solution obtained refining the
solution with a local optimization.

For all inclination the minimal drift is not zero, with two
remarkable exceptions: 49 and 63.4 deg, and their symmetric
counterparts (with respect to 90 deg), that is, 131 and 116.6 deg. In
the following we will refer to the 49 and 131 deg inclinations as
“special inclinations,” keeping the term “critical inclinations” for the
63.4, 116.6 deg case. The heuristic of the genetic algorithms is
definitely not responsible for these peaks, as it turns out by actually
propagating the resulting best individuals. At a generic inclination,
say 35 deg, the best individual returned by the optimization results in
a relative motion that is not periodic is visualized in Fig. 7. The small
residual drift is comparable to the one that results using the Schaub
J2-invariant orbit condition. To confirm this last statement, we have
plotted in Fig. 8 the value of the objective function given by Eq. (5)
during one complete orbit in the case of the Schaub J2-invariant orbit
and in the case of the condition returned by our genetic algorithm.

At critical inclinations (63.4, 116.6 deg) the relative motion turns
out to be perfectly periodical (see Fig. 9). The corresponding optimal
decision vector is

�� �0:602 km; 0:848 km; 0:06 km;�5:32 
 10�3 km=s;

� 1:402 
 10�3 km=s;�9:339 
 10�3 km=s; 5:452:7 s�

Note that in the J2 perturbed case, the condition is no longer of
period matching as a difference in all the six orbital elements is kept,
as reported in Table 2.

The possibility of obtaining a perfectly periodical relative motion
at these inclinations is probably linked to the cancellation of the
secular drift of the perigee argument, which causes the variation of all
parameters to happen with the same main frequency.
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At the two special inclinations (49, 131 deg), the relative satellite
motion resulting from the best individual has only a very small drift,
as shown in Fig. 10. The corresponding decision vector is

�� � �1:652 km; 2:692 km; 2:546 km; 1:689 
 10�3 km=s;

� 3:839 
 10�3 km=s;�4:120 
 10�3 km=s; 5:436:77 s�

The residual drift does not allow us to conclude that the motion is
perfectly periodical at these inclinations. In fact, we were unable to
find a fitness value of 1000 (meaning perfect periodicity) at all the
inclinations. A more detailed plot of the objective function achieved
around the special inclination is shown in Fig. 11. The numeric noise
that can be observed in the graph is a consequence of the numerical
optimization process, amplified by the definition of the objective
function given by Eq. (5). At higher values of the fitness very small
differences in the residual drift cause significant differences in the

objective function value. We show in Fig. 12 a plot of the period of
the found minimum drift orbits. This is clearly quite different from
the Keplerian period confirming the importance of having the
optimizer to choose it.

The existence of the two special inclinations where the relative
motion between satellites can be periodical is evident from the data
presented in Fig. 6 and clearly calls for some explanation. A number
of elegant and interesting exact results have already been established
in the years for the periodicity of absolute satellite motion. Kyner
[10] deals with the periodicity of a J2 perturbed motion. Hughes [11]
discusses the occurrence and the uniqueness of the critical
inclinations.Mortari [12] developed an entire new theory to dealwith
the periodicity of satellite constellations with respect to different
reference frames. Unfortunately, the case of relative satellite motion
has been studied much less. We have already commented on the
approximated minimal drift conditions available in the literature, but
to the best knowledge of these authors, there are no exact results on
the subject. Recent studies [13,14] try to approach the phenomenon,
though not giving a definite answer.

One may argue that the existence and the value of the two special
inclinations may be linked to the parameters of the Chief orbit or to
the size of the formation (i.e., the relative orbit typical dimension).
By increasing the semimajor axis of the Chief orbit the fitness values
reached by formations at both i� 49 deg and i� 63 deg are not
influenced as shown in Fig. 13.

The same results apply by changing the value K, related to the
formation size as shown if Fig. 14. The validity of the special
inclinations is not affected by the size of the formation or by the
semimajor axis of the Chief orbit: they exist for a wide range of
formations around circular orbits. For the eccentricity the results are
quite different.

Table 2 Comparing orbital elements for the J2 case at the critical
inclination

Orbital element Chief Deputy Difference

a 6678 km 6677.7091 km �0:291 km
e 0.00118 0.01573 0.01455
i 63.435 deg 63.391 deg �0:044 deg
$ 90 deg 50.126 deg �39:87
� 270 deg �89:123 deg 0.877 deg
� 0 deg 40.333 deg 40.333 deg

$ 	 � 90 deg 90.46 deg 0.46 deg
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Let us plot the result obtained by increasing the eccentricity value
of the Chief orbit. The critical and the special inclinations are again
compared to a general case; the results are reported in Fig. 15. To
allow the study of high eccentricity, the semimajor axis of the
reference orbit has been raised to 8000 km. The best individual
fitness value for the special and the critical inclinations is quite high
for the range of eccentricity analyzed, but surprisingly also at the
generic inclination, the fitness may present remarkable values.
Therefore, in the case of eccentric orbits, the drift in the relative
motion can be small also outside of the critical and the special
inclinations.

V. Conclusions

The possibility to obtain natural periodic motion of formation
flying satellites has been investigated through the use of a numerical
global optimization technique such as genetic algorithms, refined by
a constrained nonlinear optimization. After validating the approach
on the well-known unperturbed test case, the attention has been
focused on perturbations. Although some results obtained are trivial
and expected, some others are quite surprising and interesting. In
particular, the possibility to have a periodic motion is denied, as
shown later on, and also when a conservative, symmetric
perturbation like J2 is considered. We find four remarkable

exceptions: when the formation reference orbit (circular or elliptical)
has an inclination of 63.4 or 116.6 deg (which are the classical critical
inclinations) and of 49 or 131 deg (which we define as special
inclinations). An extensive simulation campaign is performed to test
the relative motion features at these special inclinations. While the
physical reasons of this behavior are still under study, a simple
conclusion can be drawn. If two satellites have to remain in close
formation, the choice of the inclination of the reference orbit is of
fundamental importance, and it results in a smaller control effort to
keep the satellites in a bounded formation.
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Fig. 14 Best individual fitness vs formation size.
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